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Can we form disk galaxies?
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1 Not really ...

.ip ® Formation of disks has been notoriously difficult
+ Feedback?
+ Resolution?
+ Numerical Methods? Agertz et al, 2010

« AMR vs SPH SR6-n0LlezML

m Remember: on galactic
scales, hydrodynamics N
is an approximation ’ |
(probably) ! ol

m \What is the mass of MW-type
DM halo

¢ Abundance M~2.5x1012M
+ Stellar dynamics M~10"2 M,
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function with DM halo mass function

M Compare SDSS stellar mass
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We still do not really understand
how to form disk galaxies
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comes in late and thus at low density

I Most of the angular momentum
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Il The local universe
AIP .

Is not a _ |
representative part "
of the universe. ]
The MW is situated
In a region of
relatively low
density and with
large nearby mass
concentrations like Virgo, the
local supercluster, Perseus Pisces and Coma

9

@ Camelopardus

S22, Perseus
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Canstrained Local®tni E Simulations

CLUES-Project | People | Simulations

Sitemap » CLUES-Project A | search |
Imprint ' ) ' '

Talks | Articles | Image gallery | Movies

CLUES - Constrained Local UniversE Simulations

The Local Group and its environment is the most well observed region of the universe. Only in this unique
environment can we study structure formation on scales as small as that of very low mass dwarf galaxies. The
main goal of the CLUES-project is to provide constrained simulations of the local universe designed to be used as
a numerical laboratory of the current paradigm. The simulations will be used for unprecedented analysis of the
complex dark matter and gasdynamical processes which govern the formation of galaxies. The predictions of
these experiments can be easily compared with the detailed observations of our galactic neighborhood.

Stefan Gottl8ber Yehuda Hoffman Anatoly Klypin Gustavo Yepes




Local Group alikes are pretty rare!

AlP @ gnalysis of 90 Mpc box, constrained simulation
m WWMAPS normalization

m one excellent candidate
¢+ Virgo:
« Mass: 1.2x10"* M, (more massive)
« distance: 14.9 Mpc (19.0 Mpc < NED)
+ Fornax:
* mass: 4.2 x10 M (7.0x10"3 M < ApJ 548, L139)
« distance: 19.2 Mpc (17.6 Mpc < NED)

+ Local group

« mass: 3.0x10"°M (lower mass end)
 MW/Andromeda distance: 690kpc (700kpc)
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The CLUES Local Group Z = 0.00

20.0 kpe/h Ml ky Wy

Androméda ! ’
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The Future of Astrocomputing
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AIP

The Future of Astrocomputing
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6 DM only
simulations,
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The Future of Astrocomputing
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Preferential infall of satellites
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The MW is not a typical galaxy ...

m Assembly Times
AIP 12 e p T r kg frrrspirrina
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Original vs. reconstructed halo displacements

o _ WF reconstructed displacement
Original halo dgp_lacement_ (from 558 radial peculiar velocities
from initial conditionsatz=0 within R = 30 Mpc/h sphere)

Doumler et al, 2011



Original vs. reconstructed initial conditions
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How about observations?
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E How about observations?

m [ he substructure crisis

¢ Systematic searches using large imaging surveys
(SDSS) reveal a considerable (sufficient”?) number of
new satellites

m Substructure in phase space — tracing the
formation history of the Milky Way

+ Lot of activities following the discovery of Sagittarius
dwarf

m Imaging
o« SDSS, PanStarrs, Euclid, LSST

m Spectroscopy
¢ SDSS, RAVE, GAIA, HERMES, 4MOST

m Astrometry
+ Hipparcos & GAIA 23

AIP

o
=
(@)
(&)
(@)
=
(7))
<
Y
(@)
()
—
-]
e
>
LL
(<))
e
I—

16 Dec
2010



Velocity Substructure — =)
in RAVE

AlIP ~70° < b < =-50°
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The Future of Astrocomputing
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Recent disruption event
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The Dawning of the Stream of Aquarius in RAVE

=

M. E. K. Williams®, M. Steinmetz®, G. M. Seabroke?, A. Helmi®, O. Bienavme®, J.
Binney”, J. Bland-Hawthorn', R. Campbell®, K. C. Freeman®, J. P. Fulbright'’, B. K.
Gibson'', G. F. Gilmore'?, E. K. Grebel", U. Munari'®, J. F. Navarro', Q. A. Parker'®, A.
Siebert®, A. Siviero'*, F. G. Watson’, R. F. G. Wyse!’, T. Zwitter'’
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E The Future: GAIA

AP g Cornerstone mission of ESA

m Scheduled for launch in late 2012

m Main objective: To create the largest and
most precise three dimensional chart of
our Galaxy by providing unprecedented
positional and radial velocity
measurements for about one billion stars
in our Galaxy and throughout the Local
Group.
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The Future of Astrocomputing
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Light Bending in Solar System

The sky from L2 in ‘aclipti airginates of JRP2455562.5 = 20171 —dan—01

1 = g2

The Future of Astroco
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Light bending in microarcsec, after subtraction of the much larger effect by the Sun



The Future: GAIA
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GAIA
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One Billion Stars in 3-D will Provide

m in our Galaxy ...
AIP + the distance and velocity distributions of all stellar populations
the spatial and dynamic structure of the disk and halo
its formation history
a detailed mapping of the galactic dark-matter distribution
a rigorous framework for stellar structure and evolution theories
a large-scale survey of extra-solar planets (~15,000)
a large-scale survey of Solar System bodies (~250,000)

® & & o oo o

m ... and beyond

+ definitive distance standards out to the LMC/SMC

+ rapid reaction alerts for supernovae and burst sources (~20,000)
¢ QSO detection, redshifts, microlensing structure (~500,000)
¢

fundamental quantities to unprecedented accuracy: y to 2x10-6
(2x10-5 present)
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m Fundamental physics - reference frame - solar system - extrasolar

planets -
(&) . .
& m stellar systems - stellar physics - Galactic astronomy - quasars and
© galaxies. 35
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